Integrating Decision Tree and K-Means Clustering with Different Initial Centroid Selection Methods in the Diagnosis of Heart Disease Patients
نویسندگان
چکیده
Heart disease is the leading cause of death in the world over the past 10 years. Researchers have been using several data mining techniques to help health care professionals in the diagnosis of heart disease patients. Decision Tree is one of the data mining techniques used in the diagnosis of heart disease showing considerable success. K-means clustering is one of the most popular clustering techniques; however initial centroid selection strongly affects its results. This paper investigates integrating k-means clustering with decision tree in the diagnosis of heart disease patients. It also investigates different methods of initial centroid selection of the k-means clustering such as inlier, outlier, range, random attribute values, and random row methods in the diagnosis of heart disease patients. The results show that integrating k-means clustering with decision tree with different initial centroid selection could enhance the decision tree accuracy in the diagnosing heart disease patients. It also showed that the inlier initial centroid selection method could achieve higher accuracy than other initial centroid selection methods in the diagnosis of heart disease patients. Keywords-Data Mining, K-Means Clustering, Initial Centroid Selection Methods, Decision Tree, Heart Disease Diagnosis.
منابع مشابه
Integrating Naive Bayes and K-means Clustering with Different Initial Centroid Selection Methods in the Diagnosis of Heart Disease Patients
Heart disease is the leading cause of death in the world over the past 10 years. Researchers have been using several data mining techniques to help health care professionals in the diagnosis of heart disease. Naïve Bayes is one of the data mining techniques used in the diagnosis of heart disease showing considerable success. K-means clustering is one of the most popular clustering techniques; h...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملClustering with Intelligent Linexk-Means
The intelligent LINEX k-means clustering is a generalization of the k-means clustering so that the number of clusters and their related centroid can be determined while the LINEX loss function is considered as the dissimilarity measure. Therefore, the selection of the centers in each cluster is not randomly. Choosing the LINEX dissimilarity measure helps the researcher to overestimate or undere...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012